Installing CUDA 10.2 and RTX NVidia drivers on Ubuntu 18.04 LTS

I wanted install the NVidia Geforce drivers and CUDA development environment on fresh Ubuntu 18.04 installation.  The target machine is an HP Z820 with a Geforce RTX 2060 super card.

This assumes you want to write C code when building applicatoins for GPUs The Numba Installation Instructions say you only need the GPU drivers if you all your GPU programming is going to be done in Python.

What didn't work

Enabling proprietary drivers on installation did not work out of the box.

The out of the box install left my login process broken. The screen would turn black and a cursor would appear and then would cycle back to the login screen. The problem was the display driver/windows system crashed and then restarted back at login.  I was able to fix it by uninstalling the driver or doing an upgrade.

Assumptions

NVIDIA drivers are not installed.  You should remove the drivers and reboot before proceeding if the drivers are loaded.  Instructions exist on the internet. 

Install CUDA and graphics drivers

StepAction
Update the System
Open terminalOpen a terminal
Updatesudo apt-get update
sudo apt-get upgrade
Install CUDA toolkit
Visit NVIDIANvidia CUDA 10.2 Instructions 
Choose the following to get these instructions


  • Linux
  • X86_64
  • Ubuntu
  • 18.04
  • deb(network)
Open Terminalopen a terminal window
Add Config Repository wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600 
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub 
sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /" 
sudo apt-get update 
Install CUDAsudo apt-get -y install cuda
Add CUDA toolkit to path
Edit profilevi ~/.profile
Add to path# set PATH for cuda installation
if [ -d "/usr/local/cuda/bin/" ]; then
    export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
    export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
fi
Verify after Reboot
Rebootsudo reboot
Verifynvidia-smi
Verifynvcc --version


Alternative instructions Nvidia Cuda Installation Guide

Sample nvidia-smi output

$ nvidia-smi

Mon Mar 16 21:37:50 2020       

+-----------------------------------------------------------------------------+

| NVIDIA-SMI 440.64.00    Driver Version: 440.64.00    CUDA Version: 10.2     |

|-------------------------------+----------------------+----------------------+

| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |

| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |

|===============================+======================+======================|

|   0  GeForce RTX 206...  On   | 00000000:05:00.0 Off |                  N/A |

| 41%   28C    P8     5W / 175W |    173MiB /  7981MiB |      0%      Default |

+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1365      G   /usr/lib/xorg/Xorg                            75MiB |
|    0      1426      G   /usr/bin/gnome-shell                          96MiB |
+-----------------------------------------------------------------------------+

Uninstall

Something like one of these
  • sudo apt-get --purge remove cuda
  • sudo apt-get --purge remove cuda-x.y

Change log

Created 2020 03

Comments

Popular posts from this blog

Installing the RNDIS driver on Windows 11 to use USB Raspberry Pi as network attached

Understanding your WSL2 RAM and swap - Changing the default 50%-25%

Almost PaaS Document Parsing with Tika and AWS Elastic Beanstalk